behind, posing a hidden health hazard today, a WSJ investigation found. Telecom companies laid them decades ago and thousands were left unattended in Lake Tahoe, Pennsylvania where it is leaching lead into the soil. An old cable, the WSJ then-manufacturing arm, was considering the existence of other sources of lead closer to people's homes. They said they were investigating whether to test sites near the cables, using a certified environmental testing lab. Experts believe cables should be removed because they are "continuing sources of soil and air pollution." The cleanup has been delayed repeatedly. AT&T's contractor has cited logistical issues, which AT&T didn't admit wrongdoing, the company agreed to remove the cables at a cost of $25 million, and to conduct more testing.

The health, safety and well-being of our people, our customers, and our communities is of the utmost importance to us," said a spokeswoman for AT&T, which provided the testing. "We are taking this matter very seriously," and is testing sites where the Journal found contamination. It "believes testing is the best way to determine any contamination and to make sure that AT&T's current and future operations are safe for our customers and the community." The spokeswoman said AT&T is making progress on the cleanup, and that "AT&T is working with the United States Environmental Protection Agency, the United States Department of the Interior, and the Lake Tahoe Basin Management Unit to remove the cables and dispose of them properly." The agency has never granted a permit for AT&T to install the cables, and the company provided the Journal with records that at least 6,000 Army Corps-approved cables at any time would routinely require a permit or be noted in the original paperwork, or that the Army Corps would consider the cables as part of a project. The Army Corps has acknowledged that it did not require Army Corps permits for the cables.

TheJournal didn't find lead in all the locations it tested. The level of contamination can vary widely, and AT&T said it isn't known if the level of leaching is constant; it also said that it is not possible to know how long the cables have been releasing lead. The Journal's methodology was developed in coordination with Pace Analytical Services, an accredited environmental-testing lab. A researcher with Pace said the Journal's methodology was "fully transparent, and they did a great job." The Journal's methodology was also reviewed by independent experts in lead cables since they discovered them under Lake Tahoe more than 10 years ago, who told the Journal that the Journal's methodology was "the best I've seen in the industry." The Journal's analysis of NJ Transit data found that lead-sheathed cables were more likely to be found in densely populated areas, and that over a quarter of the state's 17 counties with more than 100,000 residents had lead-sheathed cables. More than 1,000 schools and child-care centers sit within half a mile of an undetected mile-long cable in total. More than 1,000 schools and child-care centers sit within half a mile of an undetected mile-long cable in total. More than 1,000 schools and child-care centers sit within half a mile of an undetected mile-long cable in total. More than 1,000 schools and child-care centers sit within half a mile of an undetected mile-long cable in total.

In the past several years, the Journal has reported on lead-sheathed cables in suburban New Jersey, in Michigan, the Willamette River in Oregon and the Passaic River in New Jersey, according to permits. In a 2021 settlement, in which AT&T didn't admit wrongdoing, the company agreed to remove the cables at a cost of $25 million, and to conduct more testing.

You can also contact your local phone company or your health department for information on testing for lead in your home and to find out how to protect your children from lead exposure. It is recommended that you test for lead in your home, and that you talk to your doctor about lead exposure. The Journal's methodology was developed in coordination with Pace Analytical Services, an accredited environmental-testing lab. A researcher with Pace said the Journal's methodology was "fully transparent, and they did a great job." The most obvious public-health risks from lead are ingestion and inhalation, but there are also risks from skin exposure. Doctors say that no amount of contact with lead is safe, whether ingested or inhaled.

Yet large numbers of American children continue to show levels of lead in their blood—more than half of those tested, according to a Quest Diagnostics study published in 2021, have levels above the federal action threshold for children's play areas. The level of contamination can vary widely, and AT&T said it isn't known if the level of leaching is constant; it also said that it is not possible to know how long the cables have been releasing lead. The Journal's analysis of NJ Transit data found that lead-sheathed cables were more likely to be found in densely populated areas, and that over a quarter of the state's 17 counties with more than 100,000 residents had lead-sheathed cables.
A lead splice box—the small white object in the center—remains in a swampy pond alongside Bayou Teche.

A young child swimming for an hour in water and swallowing some of it, with lead content in the water higher than 3.5 micrograms per deciliter. The other child hit that mark, which is the level at which the CDC recommends seeking medical or environmental follow-up. A subsequent blood test showed non-detectable levels of lead.

Capillary tests, or blood pricks, found lead in one child's blood higher than 3.5 micrograms per deciliter. The other child hit that mark, which is the level at which the CDC recommends seeking medical or environmental follow-up. A subsequent blood test showed non-detectable levels of lead.

At selected sites, the Journal took the extra step to confirm that lead stemmed from the telecom cable with isotopic analysis. The isotopic analysis by Bruce Nelson, a geochemistry professor at the University of Washington who led testing by Bruce Nelson, a geochemistry professor at the University of Washington who led testing, showed that lead in the soil mirrored the lead from the cable and was unlike the background lead in that area.

Nelson showed the lead in the soil mirrored the lead from the telecom cable at that site, and not that of a lakeside slag heap or a lead smelter. The isotopic analysis by Bruce Nelson, a geochemistry professor at the University of Washington who led testing, showed that lead in the soil mirrored the lead from the cable and was unlike the background lead in that area.

Atop a levee in Donaldsonville, La., along the Mississippi, families often stroll near two surface-matching lead-sheathed cables buried in the ground. In May, the Journal also found high lead levels in roughly the same locations in Emerald Bayou, a spot where children play and don't wear shoes.

Assuming the current levels of lead in the sediment, playing at that spot as a child could elevate their blood lead levels. It doesn't take much lead in soil to elevate a blood level for a child; for children, the World Health Organization recommends keeping lead levels in soil below 30 micrograms per deciliter. The lead levels were well above this threshold, respectively.

In May, the Journal also found high lead levels in roughly the same locations in Emerald Bayou, a spot where children play and don't wear shoes. Lead levels were high enough to raise health concerns. On an assay of a similar cable, the town uses the area near the cable for a gumbo cook-o.

The EPA says chronic exposure to more than 2.5 parts of lead per billion in fresh water can pose a health risk. (While lead in water is described in parts per billion, lead in soil is described in parts per million. (While lead in water is described in parts per billion, lead in soil is described in parts per million.)

The sample is dissolved into nitric acid, and lead is identified by a mass spectrometer. Other elements are identified in different ways. The mass spectrometer breaks down lead and other elements into their isotopes. A computer connected to the mass spectrometer counts the isotopes, and a plot of the isotopes with different amounts of each of the isotopes to determine the amount of lead in the sample.

Experts say it is common to find varying results at different locations. The Journal's finding.

Capillary tests, or blood pricks, found lead in one child's blood higher than 3.5 micrograms per deciliter. The other child hit that mark, which is the level at which the CDC recommends seeking medical or environmental follow-up. A subsequent blood test showed non-detectable levels of lead.

At selected sites, the Journal took the extra step to confirm that lead stemmed from the telecom cable with isotopic analysis. The isotopic analysis by Bruce Nelson, a geochemistry professor at the University of Washington who led testing, showed that lead in the soil mirrored the lead from the cable and was unlike the background lead in that area.

Nelson showed the lead in the soil mirrored the lead from the telecom cable at that site, and not that of a lakeside slag heap or a lead smelter. The isotopic analysis by Bruce Nelson, a geochemistry professor at the University of Washington who led testing, showed that lead in the soil mirrored the lead from the cable and was unlike the background lead in that area.
Great WSJ investigative reporting.

Excellent reporting. Thank you. The US government could clean this up for a fraction of a penny, and then I'd be grateful.

This story is the tip of the iceberg about the environment we have created and its a disaster. Particularly as applied to child development. This may explain a lot about ADHD.

Let's please follow this up with how lead is racist and has been intentionally placed in areas to be blackened because the US is systemically racist. Now we call Ben Crump and let's fix this and botch it royally.

Unfortunately, the Federal government will probably waste time, money, and resources trying to solve the problem in their localities. I think a wise person once called this devolution.

Outstanding reporting. A perfect opportunity for government and industry to work together.

Reply

John Schmiedeke

By joining the conversation you are accepting our community rules and terms. To view rules, terms and conditions, click here. Questions can be sent to moderator@wsj.com.

Gordon Binkhorst

Vanessa C. has written a question.

What do you think?

Jay SORENSEN

Reply

Gahan Haskins

Your answer has been submitted. Thank you for being a subscriber.

Michael Brown

By submitting, you agree to our Subscriber Agreement and Terms of Use, located here. You also agree to the Subscriber Agreement and Terms of Use, located here. You understand and agree that your submission is true and correct. You agree that you own the rights to the Content you submit, (a) the Content does not infringe any third party's rights, (b) the Content has not been altered and does not convey a false impression, and (c) any information you submit about the Content is accurate. You represent and warrant that (a) you own the rights to the Content you submit, (b) the Content does not infringe any third party's rights, (c) the Content has not been altered and does not convey a false impression, and (d) any information you submit about the Content is accurate. You understand and agree that your submission is true and correct.

Uploading the Content to Dow Jones & Company, publisher of The Wall Street Journal, you agree that Dow Jones has the perpetual, worldwide right to use, publish, and modify the Content in any medium now known or hereinafter developed and that Dow Jones can identify you as the author of the Content. You also agree that Dow Jones has the right to use, publish, and modify the Content in any medium now known or hereinafter developed and that Dow Jones can identify you as the author of the Content. You understand and agree that your submission is true and correct.

Powered by Terms | Privacy | Feedback

Sort by

Choose

Sort

Share

Share

Share

Share